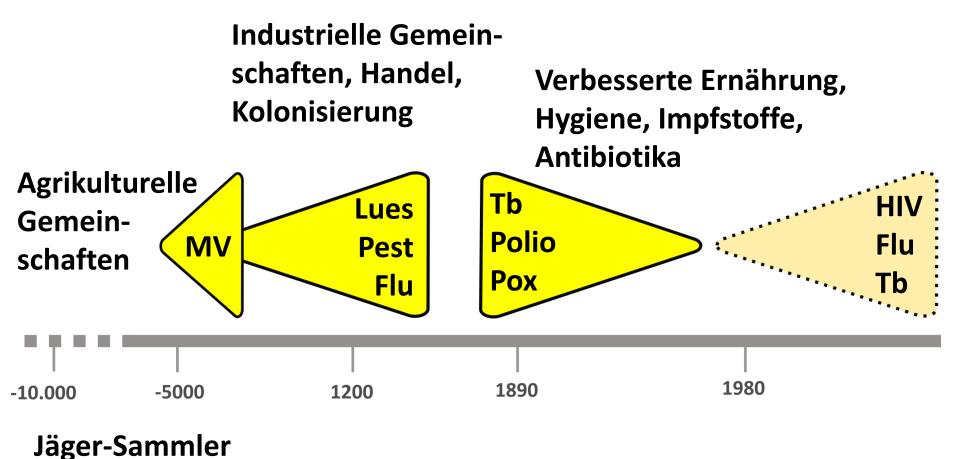

Pathogene Erreger des Menschen

- 60% sind zoonotischen Ursprungs (Wiederkäuer, Fleischfresser, Vögel, Primaten)
- 15% werden als "emerging" bewertet (davon > 70% zoonotisch)
- 25% ebenfalls in Haus- und Wildtieren

Woolhouse and Gowtage, 2005


"Zoonoses from wildlife represent the most significant, growing threat to global health of all EID."

Jones et al., 2008

Belastungen durch Infektionskrankheiten

Jones et al., 2013

"A minimum of 320,000 mammalian viruses awaiting discovery"

A Strategy To Estimate Unknown Viral Diversity in Mammals

Simon J. Anthony,^{a,b} Jonathan H. Epstein,^b Kris A. Murray,^b Isamara Navarrete-Macias,^a Carlos M. Zambrana-Torrelio,^b Alexander Solovyov,^a Rafael Ojeda-Flores,^c Nicole C. Arrigo,^a Ariful Islam,^b Shahneaz Ali Khan,^d Parviez Hosseini,^b Tiffany L. Bogich,^{e,f} Kevin J. Olival,^b Maria D. Sanchez-Leon,^{a,b} William B. Karesh,^b Tracey Goldstein,^g Stephen P. Luby,^h Stephen S. Morse,^{g,l} Jonna A. K. Mazet,^g Peter Daszak,^b W. Ian Lipkin^a

Mbio, 2013, 4: e00598-13

- "Virome" aller Wildtierarten?
- Detektion mit degenerierten Primern (PCR, Chips)
- Detektion mittels Metagenomanalyse
- Sind ca. 10 Milliarden US \$ ausreichend?
- Was ist das zoonotische Potenzial all dieser Viren?

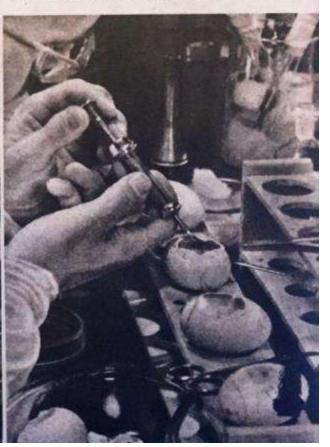
since 1910

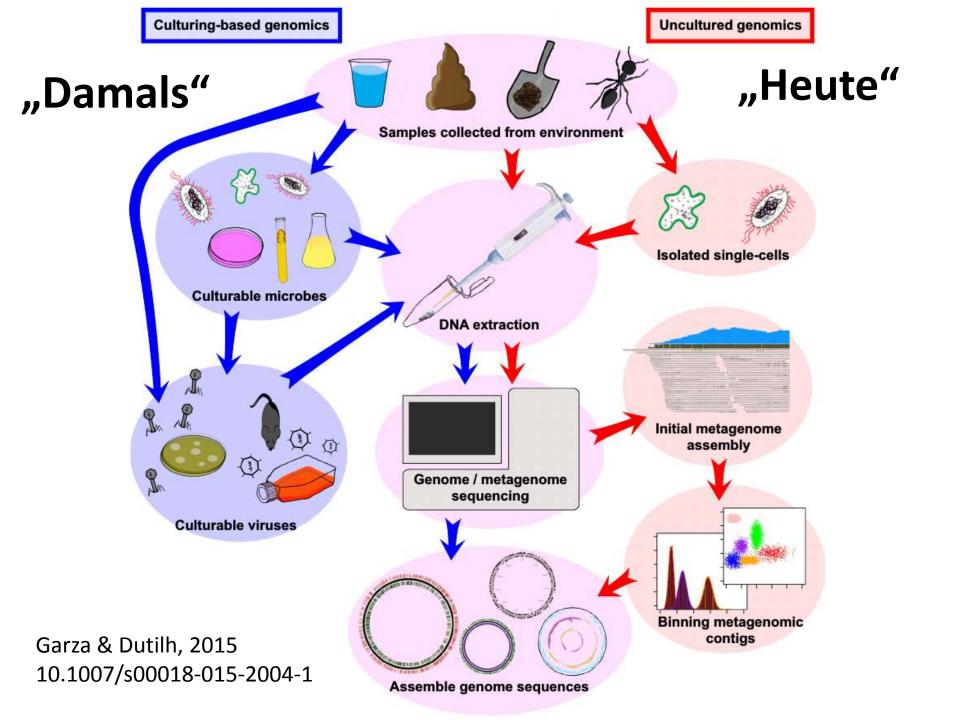
Bundesforschungsinstitut für Tiergesundheit
Federal Research Institute for Animal Health

Achtung, Seuchenschwelle! Bevor die junge Assistentin das "Sperrgebiet des Sperrgebiets" betritt, mult auch sie, wie alle Mitarbeiter, Kleidung und bereitgestellte Schultzpantoffeln wechseln. Die Tür trennt den virusfreien Teil des Instituts von jenen Räumen, in denen 12 Veiterinär-

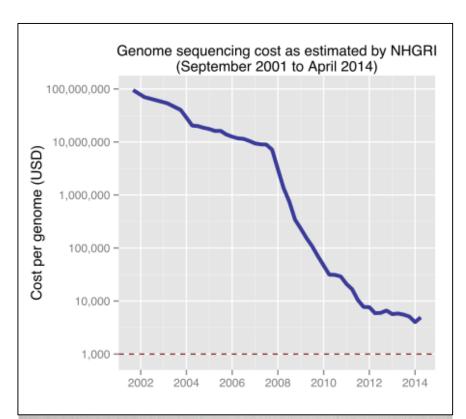
Mediziner und Chemiker mit Erregern gefährlichster Tierkrankheiten laborieren und Impfstoffe erarbeiten. Die auf einer insei des Greifswalder Boddens gelegene Forschungsstätte besitzt große Bedeutung für eine erfolgreiche Entfaltung der Vielswirtschaft in der Deutschen Demokratischen Republik

Die Virusjäger von Riems


Unser Reporter G. Kiesling besuchte die von aller Welt abgeschlossene Herstellungsstätte für Impfstoffe gegen Tierseuchen


Kühe fahren Seilbahn: Nachschub für Rinder, die bereits ihre Phicht bei der Erzeugung von Impfstoffen gegen Maul- und Klauensauche erfüllt haben. Das weltbekannte institut stellt ferner Heilstoffe gegen Rotlauf. Staupe und Hühnerpest her

Auf der Schlachtbank? Noch nicht, die Kuh erhält zunächst eine Spritze mit Krankheitserregern. Nach 24 Stunden ist sie "durchseucht", ihre Zungenschleimhaut ergibt den Impfstoft. Das Fleisch des später geschlachteten Tieres bleibt genießbar "Schlachtbank" der Zukunft: Die Virusiager von Riems versuchen retzt, die Grundlage für Impfatoff gegen Mauund Klauenseuche aus angebrületen und infizierten Eiern zu gewinnen: eine bedeutende Verbilligung und Voreinfachung

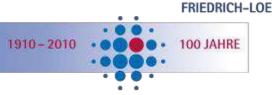


NGS-Technology

- → Verschiedene Plattformen
- → Enormes Potential: Milliarden Nukleotide/Ansatz werden sequenziert
- → Molekulare Analyse ganzer Genome (whole genome; WGA), Populationen und Mikroökosysteme
- → NGS ermöglicht Metagenomics

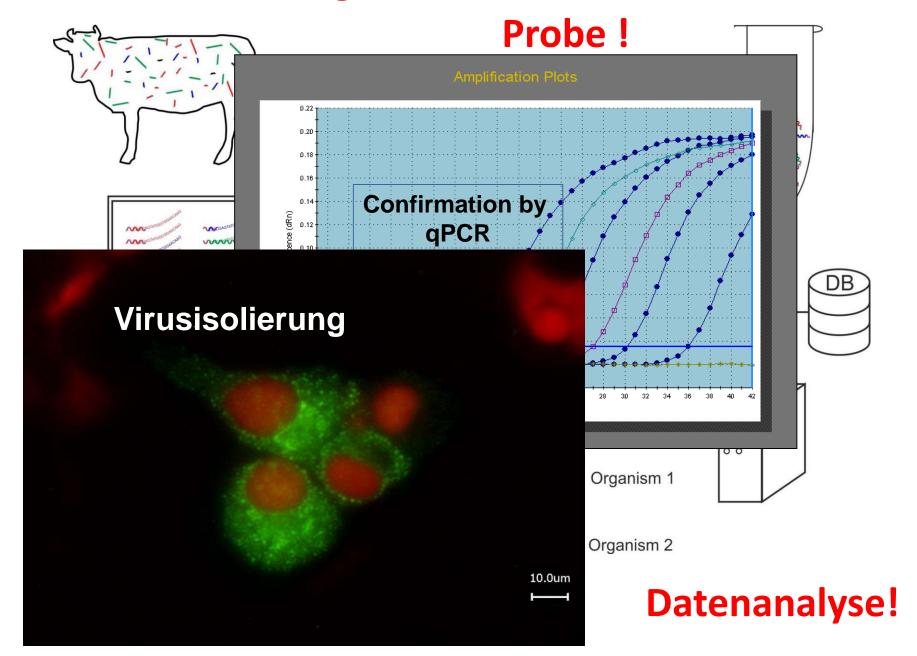
NGS-Genomsequenzierung ≠ **Metagenom-Analyse!**

Hostspecies	Matrix	Sequencing platform	Reads Patho	gen-Reads %Pathog	gen-Read Pathogen
Sheep	Vaccine	454	130302	4188	3,214 Poxviridae
				26	0,020 Herpesviridae
Cn c'				149	0,114 Caninedistemper virus ■ 8,917 Nidovirus
Sn Comr	lata Cadina Canama	Coguence of Dut	ativa Marral D	luctonous	1,302 Retrovirus
_	olete Coding Genome	0,004 Nidovirus			
_G Virus	Serotype 27	0,013 BTV-27			
Go					5,082 BTV-y
Go Maria Jeno	kel, ^a Emmanuel Bréard, ^b Claudia Schulz, ^a	Dirk Höper, ^a Martin Beer, ^a	12,790 BTV-z		
Stéphan Z		• • • • • • • • • • • • • • • • • • • •	0,000 Bornavirus		
Go Go Maria Jeno Stéphan Z Institute of D	iagnostic Virology, Friedrich-Loeffler-Institut, Greifsw	0,026 Schmallenberg@irus			
Tu M.J. and E.B. co	ontributed equally to this work.				37,802 Cardiopicornavirus
Turtle	CellatultureBupernatant	illumina : MiSeq	91570	74949	81,849 Cardiopicornavirus
Turtle	Cellatulturessupernatant	illumina : MiSeq	142879	36350	25,441 Cardiopicornavirus
Turtle	Cellɪtultureɪsupernatant	illumina ⊡ MiSeq	36419	32131	88,226 Orthoreo
Lynx	Cell © tulture ® upernatant	illumina MiSeq	61953	16110	26,004 Calicivirus
Pig	Cell © tulture ® upernatant	illumina ¹ MiSeq	3148090	2149161	68,269 porcine Astrovirus
Cattle	CellutureBupernatant	illumina ¹ MiSeq	2008444	1862	0,093 bovine⊠strovirus
Penguin	CellutureBupernatant	lon@orrent	1388762	9992	0,719 Herpesvirus
		illumina ® MiSeq	902219	10229	1,134 Herpesvirus
Penguin	CellutureBupernatant	Ion⊡orrent	970744	6022	0,620 Herpesvirus
		illumina ® MiSeq	750535	4548	0,606 Herpesvirus
Trout	CellutureBupernatant	454	130100	141	0,108 Paramyxovirus
Fish	CellutureBupernatant	illumina⊡MiSeq	361380	288129	79,730 Orthomyxovirus
Pig				260000	84,692 Mycoplasma
Dog	amparison of Barsi	0,014 Plasmodium			
_	omparison of Porci	0,003 Leishmania			
Dog	Viruses from G	0,001 Plasmodium			
	United St	4	0,000 Leishmania		
Dog		•		150	0,015 Plasmodium
	s Hanke,¹ Maria Jenckel,¹ Anja Petrov,	and their relation to the outbrea	strain in the United States	59 *	0,006 Leishmania
	Mathias Ritzmann, Julia Stadler, kimkin, Sandra Blome, Anne Pohlmann,	is lacking.	that occurred on a swine-	4_	0,015 Plasmodium
	Schirrmeier, Martin Beer, Dirk Höper	fattening farm in Germany in		2 *	0,007 Leishmania
Pig	reces	шишшишэец	100000	10376	1,038 Porcine pidemic diarrhea virus


Was ist Metagenom-Analyse?

The basic definition of metagenomics is the analysis of genomic DNA from a whole community.

Gilbert JA, Dupont CL (2011). Ann Rev Mar Sci 3: 347-71


Metagenomics is the application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species.

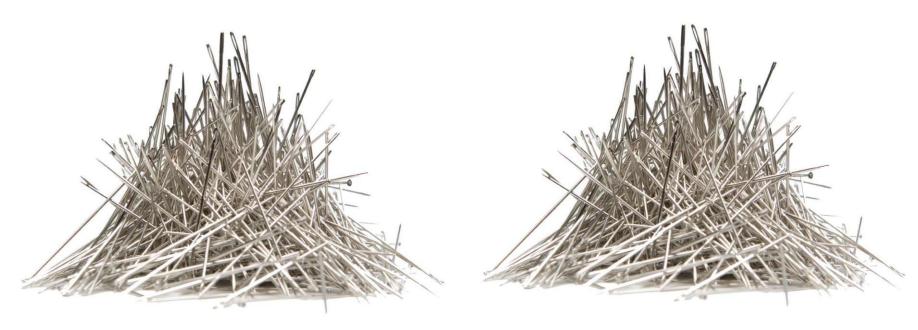
Chen K, Pachter L (2005). PLoS Comput Biol 1(2): e24.

Metagenomics Workflow

Probleme der Metagenom-Analyse

"Pathogen detection in a metagenomic dataset is finding the needle in a haystack"

- Nachweis einer "bekannten" Nadel?
- Sind es unbekannte Erreger, die jedoch verwandte Sequenzeinträge in Datenbanken haben?
- Sind es unbekannte Sequenzen ohne Verwandte in Datenbanken?
- **Hoher manueller Aufwand** (und "gut feeling") bei der **Auswertung erforderlich!**


Probleme der Metagenom-Analyse

"Pathogen detection in a metagenomic dataset is finding the needle in a needlestack"

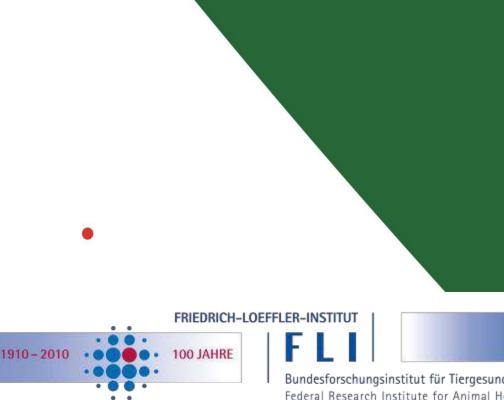
Probleme der Metagenom-Analyse

"Pathogen detection in a metagenomic dataset is finding the **one needle** in a **needle**stack that is **different** from another needlestack. "

Gesundes Tier/Bestand

Krankes Tier/Bestand

Gaaanz viel Tier, viel Bakterien, gaaanz wenig Virus!


Rindergenom:

2.97 Gbp

Circovirusgenom:

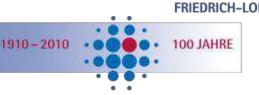
1768 b

→ Massenverhältnis CV:Cattle = 1:1,679,864

Datenanalyse – ein Nadelöhr

- Große Datenbanken: Lange Rechenzeiten für Abgleiche (Monate!)
- Zu kleine Datenbanken: Wichtige Sequenzen eventuell nicht repräsentiert?

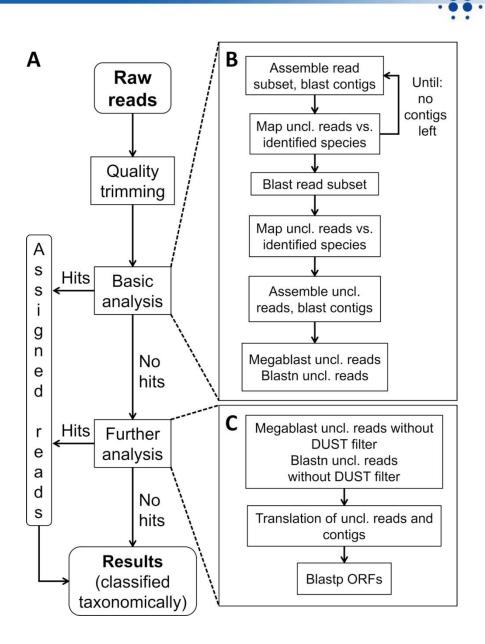
Scheuch et al. BMC Bioinformatics (2015) 16:69 DOI 10.1186/s12859-015-0503-6

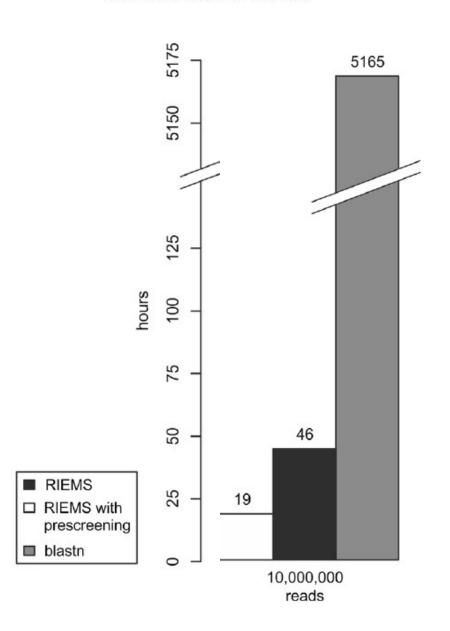

Reliable Information Extraction from Metagenomic Sequence datasets

METHODOLOGY ARTICLE

Open Access

RIEMS: a software pipeline for sensitive and comprehensive taxonomic classification of reads from metagenomics datasets


Matthias Scheuch[†], Dirk Höper^{*†} and Martin Beer



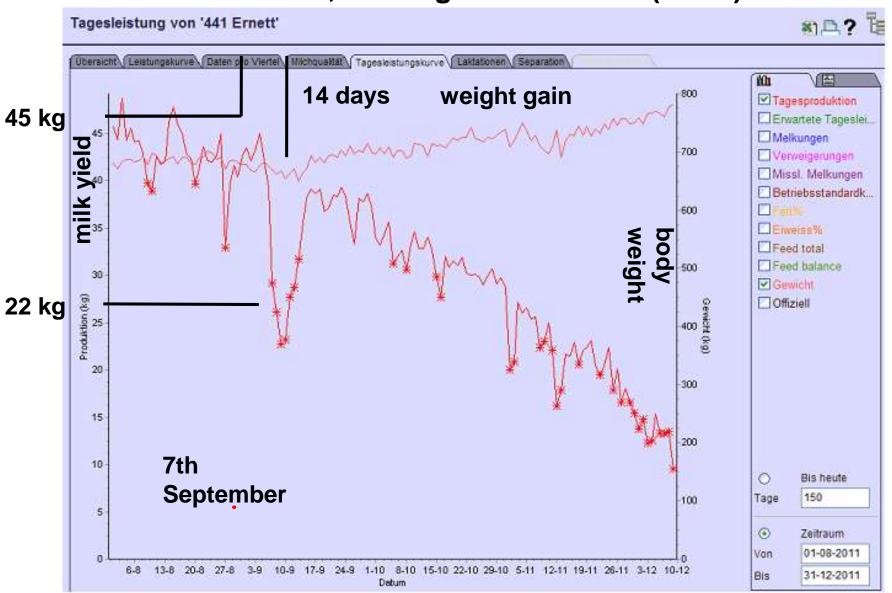
FRIEDRICH-LOEFFLER-INSTITUT

Federal Research Institute for Animal Health

Beispiel 1: SBV

since 1910

FLI


Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

Kuh 441; 213 Tage in Laktation (Hof 1)

Datenanalyse- Beispiel SBV

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

Superkingdom Tax Family Tax-ID Taxonomy-ID		Scientific name		Mapping	Assembly	Blastn vs orgs.	Megablast vs ntdb	Blast vs nto	
1	377	root							
NA	377				•			_	
155900	1	uncultured organism		0	0	0	1	0	
2592	1	Plasmid pLB1		0	0	0	0	1	
32630 521732	365 10	synthetic construct Cloning vector lambdaS2775		148 0	0 8	217 0	0 2	0	
321732	10	Clothing Vector lambda32773		- 0	- 0	- 0		- 0	
Superkingdom Tax-ID									
Family Tax-ID					E	Blastn	Megabl	ast	Blastn
Taxonomy-ID co	unt S	cientific name	Mapping	Asser	nbly vs	orgs.	vs ntd	b	vs ntdb
11571	7	Bunyaviridae							
11582	2	Aino virus	0	0		0	0		2
159150	1	Shamonda virus	0	0		0	1		0
70566	4	Akabane virus	0	0		0	0		4
280701	1	Pseudomonas phage F116		0	0	0	1	0	
11571	7	Bunyaviridae							
11582	2	Aino virus		0	0	0	0	2	
159150	1	Shamonda virus		0	0	0	1	0	
70566	4	Akabane virus		0	0	0	0	4	
11632	16								
11864	4	Avian leukosis virus		0	0	0	3	1	
269448	1	Rous sarcoma virus - Schmid		0	0	0	1	0	
31670	12	Avian myeloblastosis-associa	ted virus type 2	0	6	0	6	0	
151340	2	Papillomaviridae			_		_		
10579	2	Human papillomavirus type 8		0	0	0	2	0	
2	13363	Bacteria							
103957	2	Actinosynnemataceae							
446462	2	Actinosynnema mirum DSM 43	3827	0	0	0	2	0	

Centers for Disease Control and Prevention

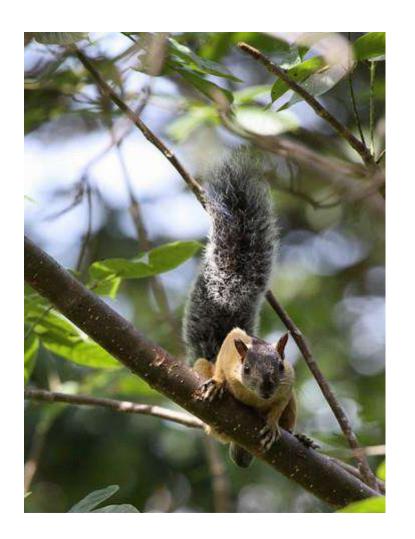
CDC 24/7: Saving Lives, Protecting People™

Emerging Infectious Disease journal ISSN: 1080-6059

Volume 21, Number 7—July 2015

Dispatch

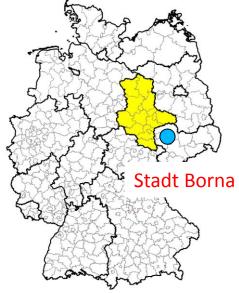
Schmallenberg Virus Recurrence, Germany, 2014


On This Page

Kerstin Wernike, Bernd Hoffmann, Franz J. Conraths, and Martin Beer⊠

Author affiliations: Friedrich-Loeffler-Institut, Insel Riems, Germany

FRIEDRICH-LOEFFLER-INSTITUT



Beispiel 2: Neues zoonotisches Bornavirus (VSBV-1)

Wie alles begann:

- Drei Fälle tödlicher Enzephalitis by Züchtern von Bunthörnchen in Sachsen-Anhalt (2011, 2013)
- Bunthörnchen (Sciurus variegatoides), stammten aus Zentral-Amerika, wurden als Haustiere nach Deutschland importiert
- Klinik, pathologisch-anatomische und histopathologische Veränderungen im Einklang mit dem Bild einer viralen Enzephalitis
- Bunthörnchen als einziger gemeinsamer anamestischer Faktor: Zoonotische Herkunft des Erregers?

Einzelnes Hörnchen aus Haltung von Patient 3 beprobt:

- Alle Routineuntersuchungen (Viren, Bakterien, Parasiten) negativ.
- Metagenom-Analyse initiiert:

Table S5: Results of the metagenomic analyses of variegated squirrel contact animal samples

		Reads	BoDV-related	Nucleotide sequence identity
Sample	Organ	sequenced	reads	with BoDV
L00652	Kidney/liver/lung	376,229	3	70.3 - 81.2 %
L00651	Chest cavity fluid	40,499	2	75.5 - 80.6 %
L00653	Heart/brain	410,648	7	67.6 - 81.7 %
L00647	Intestine	63,346	0	NA
L00650	Spleen	370,041	0	NA
L00648	Oropharyngeal swab	16,491,045	16	70.4 - 81.7 %

NA, not applicable

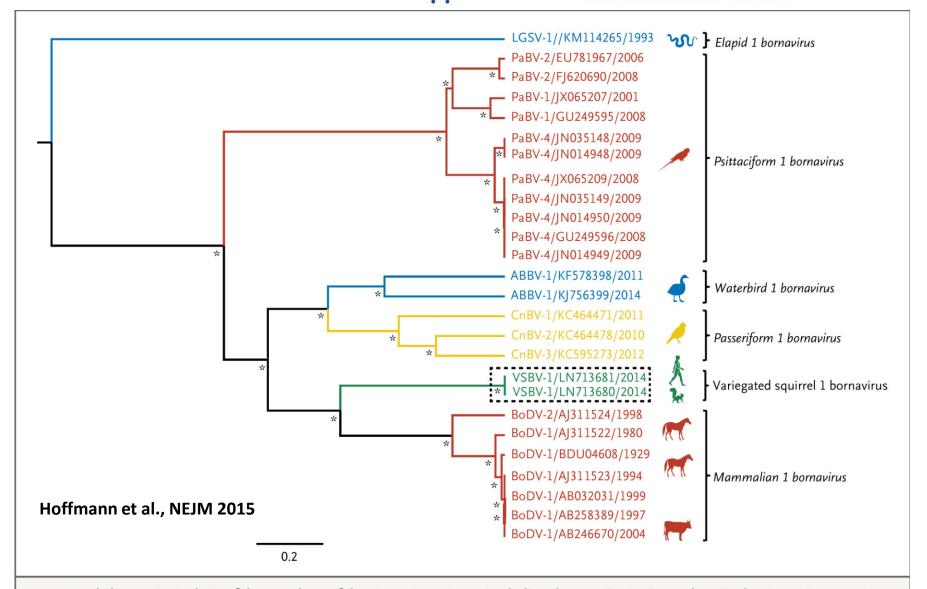
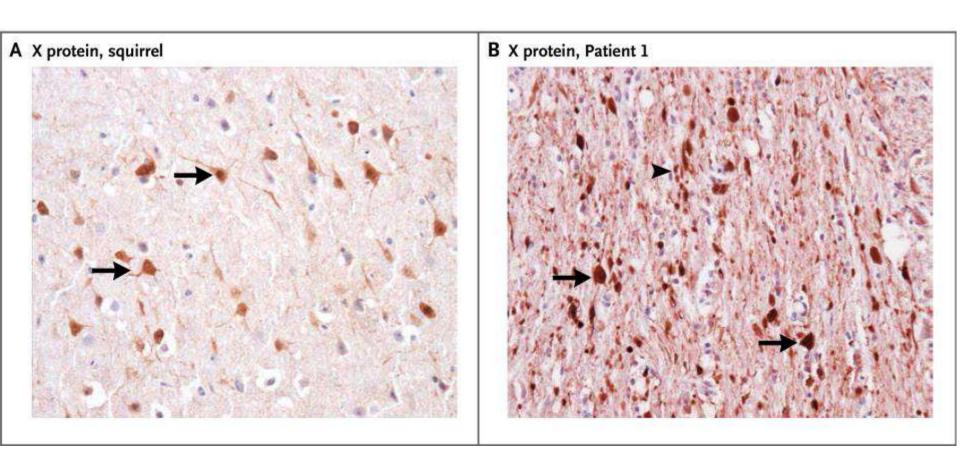
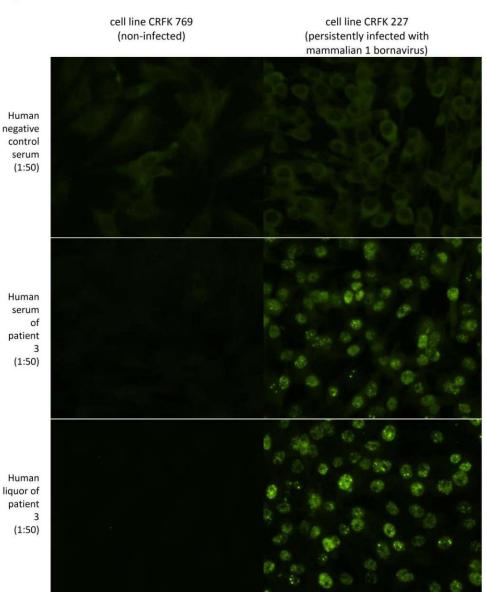



Figure 2. Phylogenetic Analysis of the Members of the Bornavirus Genus, Including the Putative Variegated Squirrel 1 Bornavirus (VSBV-1) Species.

Immunhistologie VSBV-1

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health


Immunhistochemischer Nachweis von VSBV Antigen im ZNS (gesunder) Hörnchen und des Patienten 1.

Serologischer Nachweis

Figure S4:

- Seropositive Reaktionen mit Serum und Liquor von Patient #3 gegenüber BoDVinfizierter Zellkultur
- Bestätigung durch Uni Giessen (Tierärztliche Fakultät) mit akkreditierter serologischer Methodik.

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT

A Variegated Squirrel Bornavirus Associated with Fatal Human Encephalitis

Bernd Hoffmann, D.V.M., Dennis Tappe, M.D., Dirk Höper, M.Sc., Christiane Herden, D.V.M., Annemarie Boldt, M.D., Christian Mawrin, M.D., Olaf Niederstraßer, M.D., Tobias Müller, M.D., Maria Jenckel, M.Sc., Elisabeth van der Grinten, D.V.M., Christian Lutter, D.V.M., Björn Abendroth, M.Sc., Jens P. Teifke, D.V.M., Daniel Cadar, D.V.M., Ph.D., Ionas Schmidt-Chanasit, M.D., Rainer G. Ulrich, Ph.D., and Martin Beer, D.V.M.

Weitere Beispiele ...

Journal of General Virology (2015), 96, 2994-2998

DOI 10.1099/jgv.0.000251

Short Communication

ommunication

Correspondence
Ben M. Hause
bhause@vet.k-state.edu

Discovery of a novel putative atypical porcine pestivirus in pigs in the USA

Ben M. Hause,^{1,2} Emily A. Collin,^{1,2} Lalitha Peddireddi,^{1,2} Fangfeng Yuan,² Zhenhai Chen,² Richard A. Hesse,^{1,2} Phillip C. Gauger,³ Travis Clement,⁴ Ying Fang² and Gary Anderson^{1,2}

¹Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, USA

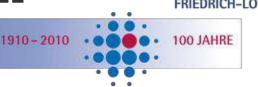
²Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas, USA

³Department of Veterinary Diagnostic and Population Animal Medicine, Iowa State University, Ames, Iowa, USA

⁴Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings,

Schlussfolgerungen

- Metagenom-Analyse ist ein universelles und machtvolles Werkzeug zur Entdeckung unerwarteter und unbekannter Erreger
- Schlüssel zum Erfolg ist die Abundanz des Erregers im Metagenom der untersuchten Probe
- Strategische Planung der Probenauswahl und –vorbereitung erforderlich
- Optimierte Datenaufbereitung und -analyse sowie geeignete Datenbanken sind unverzichtbar



Verringerung der Biodiversität (Wildtiere) und der genetischen Vielfalt (Nutztiere)

- Hohe Biodiversität bedingt einen Verdünnungseffekt von Pathogenen
- Geringe Biodiversität begünstigt wenige Arten/Vektoren und bedingt u.U. höhere Pathogenprävalenzen
- Geringe genetische Vielfalt erhöht das Risiko für "uniforme" Pathogenesen

Roche & Guegan, 2011

Vielfalt versus Masse

Erreichbarkeit

Wildtierkontakte

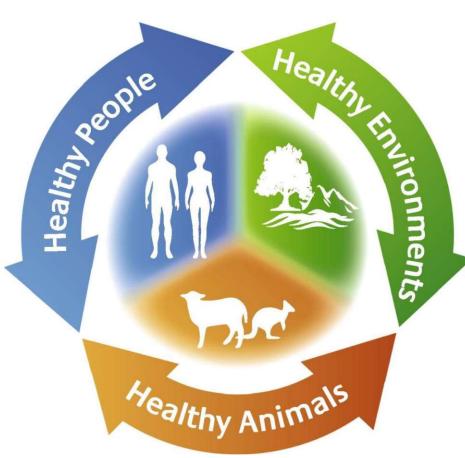
Biosicherheit

Populationsdichte

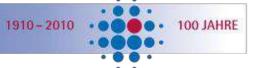
Genetische Vielfalt

Scavenging livestock

Backyard farming


Small scale commercial farming **Industrial** farming

100 JAHRE 1910 - 2010



OneHealth – Vergangenheit und Zukunft der Infektiologie

FRIEDRICH-LOEFFLER-INSTITUT

Blaise Pascal, 1623-1662

Des Menschen ganzes Unglück kommt von seinem Unvermögen, alleine in einem stillen Raum sitzen zu können.

Herzlichen Dank für ihre Aufmerksamkeit!

FRIEDRICH-LOEFFLER-INSTITUT I

FRIEDRICH-LOEFFLER-INSTITUT